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Foreword 

Dear Participant, 

Welcome to the PIM 2013 conference held on the premises of the Faculty of Civil 

Engineering, Czech Technical University in Prague, from July 1 to July 5, 2013. The acronym 

PIM stands for the first part of  Preconditioning of Iterative Methods – Theory and 

Applications. Although this topic itself is worth scholarly disputation, the conference is also 

organized to honor Professor Ivo Marek on the occasion of his 80th birthday. 

Ivo Marek graduated from Charles University in Prague in 1956 and began his career at 

the Nuclear Research Institute where he pursued the numerical modeling of processes in 

nuclear reactors. This research increased his interest in (numerical) linear algebra and 

operator theory; topics for which he is renowned. 

In 1963, he joined the Faculty of Mathematics and Physics, Charles University, where he 

had spent more than 30 fruitful years. On the brink of retirement, he joined the Faculty of 

Civil Engineering, Czech Technical University in Prague, where he is still active both in 

research and in PhD courses. 

The conference subtopics are based on Ivo’s areas of interest and include: 

i. preconditioning of sparse matrix problems, symmetric or non-symmetric, arising in 

large-scale real applications; 

ii. multilevel preconditioning techniques, including multigrid, algebraic multilevel, and 

domain decomposition methods for partial differential equations; 

iii. multilevel solution of characteristics of Markov chains. 

The conference program consists of 15 plenary lectures, 28 contributed talks, and 

8 posters. Around 90 participants from 20 countries registered for the conference. 

The participants are given an opportunity to submit a research paper based on their PIM 

2013 presentation for possible publication in either a special issue of Numerical Linear 

Algebra with Applications (NLAA;  http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN 

%291099-1506) or special PIM 2013 sections of Applications of  Mathematics (AM; 

http://am.math.cas.cz/). 

All submissions will be peer-reviewed. The former journal (NLAA) accepts manuscripts 

on topics related to numerical analysis, with emphasis on numerical linear algebra and its 

applications.  The latter journal (AM) focuses mainly on mathematical methods for solving 

problems related to differential equations and their applications. 

We hope that you enjoy your stay in Prague. 

Sincerely, 

 Ivana Pultarová 

 on behalf of the PIM 2013 Organizing Committee 
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Plenary Lectures

Preconditioning methods for high order strongly stable time
integration methods with an application for a DAE problem

Owe Axelsson, Radim Blaheta
Institute of Geonics AS CR, Ostrava, Czech Republic
Owe.Axelsson@it.uu.se, radim.blaheta@ugn.cas.cz

A particular type of high order stable time integration method enables the use
of large time-steps and is applicable also for differential-algebraic problems,
without any order reduction. To solve the arising block matrix systems, an
efficient preconditioning method is presented and analysed. The method is
applied for the solution of a Biot-Wallis type of consolidation problem arising
in poroelasticity.

Polynomial acceleration of GeneRank

Michele Benzi
Emory University, USA
benzi@mathcs.emory.edu

The ranking of genes plays an important role in biomedical research. The
GeneRank method of Morrison, Breitling, Higham and Gilbert ranks genes
based on the results of microarray experiments combined with gene expression
information, for example from gene annotations. The algorithm is a variant of
the well known PageRank iteration, and can be formulated as the solution of
a large, sparse linear system. Due to the irregular structure of the underlying
graph, sparse direct solvers suffer tremendous fill-in on this type of problem
and thus cannot be recommended.

Here we show that classical Chebyshev semi-iteration can considerably speed
up the convergence of GeneRank, outperforming other acceleration schemes
such as conjugate gradients (CG). We also consider the use of polynomial pre-
conditioning schemes for the CG algorithm.

This is joint work with Verena Kuhlemann.
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Iterative methods around porous media flow and elasticity

Radim Blaheta, Owe Axelsson, Petr Byczanski
Institute of Geonics AS CR, Ostrava, Czech Republic
radim.blaheta@ugn.cas.cz

Processes in porous media, involving mechanical deformation and fluid flow in
porous space, deserve more and more applications. Linear poroelasticity or
nonlinear poromechanics are applied in soil and rock mechanics, but also in
biomechanics, filtration technologies, fuel cells and others. In these fields, one
needs demanded computations of coupled multiphysics problems, which require
space and time discretization and efficient, parallelizable iterative methods with
suitable preconditioners for the solution of the arising large scale systems.

For the iterative solution of such systems, we use Krylov type iterative meth-
ods with preconditioners, which exploit the natural block decomposition pro-
vided by the physics and saddle point structure of the matrices. The saddle
point structure is provided by both multiphysics and mixed finite element dis-
cretization. In this contribution, we review such preconditioners and introduce
some new variants based on the Schur complement. We also provide analysis
and comparison of diagonal and block triangular variants and discussion on
efficient implementation. Finally, we indicate some possible extension for solv-
ing more complicated models, which couples multiphase flow and more general
mechanical behaviour.

References

[1] Axelsson, O., Blaheta, R., Byczanski, P.: Stable discretization of poroe-
lasticity problems and effcient preconditioners for arising saddle point type
matrices. Submitted

[2] Axelsson, O., Blaheta, R., Byczanski, P.: Solving poroelasticity problems
with block type preconditioners. In progress.
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Structured preconditioners for
Markov and Markov regenerative processes

Peter Buchholz
Technische Universität Dortmund, Germany
peter.buchholz@udo.edu

Modeling formalisms like queueing networks, stochastic Petri nets, stochastic
automata or other formal description techniques are often used to specify mod-
els that describe Markov Processes or Markov Regenerative Processes. The
matrices governing the process behavior have a very regular structure that can
be interpreted as a block-strcutured matrix where every block is represented as a
sum of Kronecker products of small component matrices. Steady state analysis
of the processes requires the solution of a set of linear equations with a coef-
ficient matrix of the mentioned type. Since the resulting systems of equations
are huge for realistic examples, efficient solution methods are necessary.

The talk presents an overview of solution methods that exploit the structure
of the coefficient matrix for building preconditoners. In particular precondi-
tioning techniques are proposed that generate a preconditioner by modifying
only the small matrices in the Kronecker products and not the global coefficient
matrix. Those preconditioners, which are denoted as structured, can be gen-
erated efficiently and require only negligible memory compared to the solution
vector. Preconditioning uses a Schur factorization of the component matrices.
The talk discusses the advantages and disadvantages of using real or complex
Schur factorizations in preconditioning. Finally, experimental results for sev-
eral example models that are analyzed with different solution techniques are
presented.
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Eventually SDD matrices and their applications

Ljiljana Cvetković
Department of Mathematics and Informatics, Faculty of Science,
University of Novi Sad, Serbia
lilac@sbb.rs

A matrix A is called nonnegative if it is entrywise nonnegative, and it is called
eventually nonnegative if Ak is nonnegative for all sufficiently large integers k.
An M-matrix A has the form A = sI − B, where B is a nonnegative matrix
and s ≥ ρ(B), the spectral radius of B. If, in addition, s > ρ(B), then A is a
nonsingular M-matrix. Recently, several generalizations of M-matrices, based
on replacing nonnegativity of B by conditions related to eventual nonnegativity
of B, have been considered. Following the same path of generalization, we will
discuss some possibilities to extend SDD class to eventually SDD one, and, then,
apply the new classes to two important problems in applied linear algebra:
eigenvalue localization and max norm estimation for the inverse of a given
matrix.
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Iterative aggregation–disaggregation for Markov chains: The
Czech perspective

Tuǧrul Dayar
Bilkent University, Turkey
tugrul@cs.bilkent.edu.tr

Markov chains are widely used to model systems which evolve by visiting the
states in their state spaces following the available transitions. In these models,
the probability distribution of the next state of a system conditioned on its
current state and the previous states it has visited depends only on its current
state. In discrete time, this requires that the time spent in a state during a
visit be geometrically distributed, whereas in continuous time it requires that
the time spent in a state during a visit be exponentially distributed. Markov
chains can be analyzed probabilistically for their steady-state and transient
behavior using numerical linear algebra to improve existing systems or to de-
vise new systems that meet certain requirements. One of the most effective
methods for computing the steady-state probability distribution of a Markov
chain is iterative aggregation–disaggregation. To be able to use this method,
first a partitioning of the state space into subsets of states needs to be identi-
fied. Once this is done, the method proceeds iteratively in a two-level manner
starting with an initial approximate solution to the original problem. At the
coarse level, each subset of states is aggregated into a single state using the
previous solution to the problem and an aggregated, smaller, but new problem
is obtained and solved. Then this new solution at the coarse level is used to
compute a hopefully better solution to the original problem at the fine level.
The method is of a divide-and-conquer nature and can be extended to more
than two levels. The objective for this iterative multi-level approximation is to
converge relatively fast to the exact steady-state probability distribution of the
Markov chain at hand with reasonable accuracy. This talk celebrates and tries
to put into perspective the contributions of Ivo Marek and his collaborators
over many years to this particular area.
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The role of generalized matrix inverses in Markov chains

Jeffrey Hunter
Auckland University of Technology, Auckland, New Zealand
jeffrey.hunter@aut.ac.nz

Generalized matrix inverses play significant roles in solving for various key prop-
erties of finite, irreducible, Markov chains, in particular, the stationary distri-
bution and the moments of the first passage time distributions. This arises from
the observation that generalized matrices are used to solve systems of singular
linear equations. In the context of Markov chains, we consider generalized ma-
trix inverses of the singular Markovian kernel, I - P, where P is the transition
matrix of the Markov chain.

We survey the application of generalized matrix inverses to such problems.
We also establish that, under the aforementioned conditions, all generalized
inverses of the Markovian kernel can be uniquely specified in terms of the sta-
tionary probabilities and the mean first passage times of the underlying Markov
chain. Special sub-families include Meyer’s group inverse of I - P, Kemeny
and Snell’s fundamental matrix of the Markov chain, and the Moore-Penrose
g-inverse.

Eigenvalues of hollow, symmetric, nonnegative matrices

Charles R. Johnson
The College of William and Mary in Virginia, USA
crjohn@wm.edu

An n-by-n matrix is called “hollow” if all it’s diagonal entries are 0. A hollow,
symmetric, irreducible, (entry-wise) nonnegative matrix (n-by-n, with n > 2)
must have at least two negative eigenvalues, because of Perron-Frobenius; if
only two, it must be nonsingular. Distance matrices and adjacency matrices of
graphs are good examples. We were motivated to study such matrices by an
initial desire to understand inequalities between diagonal entries and eigenval-
ues of LaPlacians. There are such inequalities that do not occur for general
symmetric matrices. However, this study led many interesting places, which
we will survey. For example, anywhere from 2 to n− 1 nonpositive eigenvalues
may occur, though 2 is extraordinarily rare for large n. When 2 occurs, it is
associated with remarkable matrix structure. Very modest assumptions about
the off-diagonal entries require the number of nonpositive eigenvalues to grow
with n (eg adjacency matricies).
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Stochastic solution of large least squares systems in
variational data assimilation

Jan Mandel1, Elhoucine Bergou2, Serge Gratton2

1 University of Colorado Denver, USA
2 University of Toulouse INP-ENSEEIHT and CERFACS, USA
jan.mandel@gmail.com

The 4DVAR method of data assimilation requires the solution of a large non-
linear least squares problem. The Gauss-Newton or the Levenberg-Marquardt
method require the solution of a large linear least squares system in each iter-
ation. The solution can be cast as the output of the Kalman smoother for a
linearized problem. A Monte-Carlo method, the ensemble Kalman smoother, is
used as an approximate linear solver. The ensemble approach is computation-
ally efficient and naturally parallel over the ensemble members, the linear least
squares system is never formulated explicitly, and no tangent or adjoint oper-
ators are needed. The ensemble approximations converge stochastically to the
exact solution of the linear least squares problem by a law of large numbers in
the ensemble size. However, a small ensemble is sufficient for the approximate
linear solver in the nonlinear iterative process.

Compartmental systems and IAD computations

Ivo Marek
Czech Technical University in Prague, Czech Republic
marekivo@mat.fsv.cvut.cz

The following features of the compartmental systems are discussed:

• Stationary states and their computation

• Boundary layer phenomena

• IAD methods

11



Multilevel methods for strongly anisotropic problems

Svetozar Margenov
IICT-BAS, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A Str.,
Sofia, Bulgaria
margenov@parallel.bas.bg

Consider the following elliptic boundary-value problem:

−∇ · (a(x)∇u(x)) = f(x) in Ω,(1a)

u = 0 on ΓD,(1b)

(a(x)∇u(x)) · n = 0 on ΓN .(1c)

Here Ω ⊂ R2 is a convex polygonal domain with boundary Γ = ΓD ∪ ΓN ,
The coefficient matrix a(x) = (aij(x))2

i,j=1 is assumed to be symmetric positive
definite. The main focus is on anisotropic problems, i.e., problems for which
a(x) is ill-conditioned.

The Ritz-Galerkin method is used to approximate the solution of (1) using
linear (conforming and non-conforming) or quadratic finite elements. The prob-
lem of finding the weak solution of (1) in Vh is equivalent to solving a system
of linear algebraic equations Au = f , where A denotes the stiffness matrix, f
the right hand side and u the vector of nodal unknowns.

A partitioning of the set D into a set Df of fine DOF and a set Dc of coarse
DOF is performed, i.e. D = Df⊕Dc, where Dc is associated with an augmented
coarse grid. Then we define the preconditioner

(2) B =

[
I −Bff

−1Afc

I

] [
Bff
−1

Q−1

] [
I

−AcfBff
−1 I

]
,

to approximate the inverse of A where Q is an assembly of Schur complements
of properly scaled local (stiffness) matrices associated with a covering of the
entire domain by overlapping subdomains, and Bff is an approximation to the
pivot block Aff of A. Similar techniques have recently been applied success-
fully to piecewise bilinear approximations of problems with highly oscillatory
coefficients.

Optionally, a (block) Gauss-Seidel smoother (for A) improves the precon-
ditioner. This construction can be recursively extended to define a multilevel
block-factorization. The use of the augmented coarse grid is the key to enhance
the efficiency of the (block) smoother on the coarse level where Q plays the role
of A. Based on these building blocks a nonlinear algebraic multilevel iteration
(AMLI) method is defined.

The presented numerical results demonstrate the performance of the nonlin-
ear W-cycle AMLI method for strongly anisotropic elliptic problems, including
the case when the direction of dominating anisotropy is not aligned with the
grid in this experiment.
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A comparison between three implementations of the nonlinear W-cycle AMLI
method is performed. Variant (1) is without additional global smoothing, vari-
ant (2) includes one symmetric point Gauss-Seidel (G-S) smoothing step while
variant (3) makes use of one symmetric block Gauss-Seidel (G-S) smoothing
step. Two inner generalized conjugate gradient (GCG) iterations are performed
in the W-cycle on each coarse level except on the coarsest level where the prob-
lem is solved exactly.

Some robust results for high-frequency and high-contrast problems including
strongly anisotropic channels are presented at the end.

Model reduction and preconditioned eigenvalue methods in
noise analysis and noise reduction

Volker Mehrmann
Technische Universität Berlin, Germany
mehrmann@math.tu-berlin.de

We discuss nonlinear parameter dependent eigenvalue problems arising in the
the noise analysis of disk brakes. The problem of our partners in engineering
and the car industry is to avoid squeaking of brakes in operation. To achieve
this goal preconditioned iterative solution methods for the solution of nonlinear
parameter dependent eigenvalue problems for the finite element models are
studied. These are solved for a large set of parameters to achieve a parameter
dependent small scale representation that can be used in noise reduction or
compensation. We present some of the necessary analysis and several numerical
results.

This is joint work with Sarosh Quraishi and Christian Schröder.
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Challenges for the numerical solution methods when
simulating multiphase flow problems

Maya Neytcheva
Uppsala University, Sweden
maya.neytcheva@it.uu.se

Microstructure evolution in complex multiphase-multicomponent systems has
been and is of significant importance for numerous industrial processes as well
as for academic research, technology improvements and development of new
materials and devices.

Phase transitions and morphological changes in microstructures take place in
a variety of processes, such as spinodal decomposition, grain and crystal growth,
solute drag, directional solidification, diffusion-controlled processes, reaction
pathways controlling the structural evolution of complex material mixtures and
many more. Today, a deeper understanding of the dynamics of those complex
and coupled phenomena is to a large extent gained by computer simulations of
the underlying processes, based on adequate mathematical models.

We discuss numerical simulations of multicomponent and multiphase sys-
tems, based on the so-called phase-field model. The major focus is on the
arising algebraic structures and suitable preconditioned iterative methods to
solve the arising nonlinear and linear systems of equations.

14



Functional analysis and algebraic iterative computations.
There and back again.

Zdeněk Strakoš
Faculty of Mathematics and Physics, Charles University in Prague,
Czech Republic
strakos@karlin.mff.cuni.cz

In mathematical modelling using partial differential equations, setting the math-
ematical model and its analysis is followed by discretization and by matrix com-
putations for finding (an approximate) solution of the resulting finite dimen-
sional algebraic problem. When such computations are performed iteratively,
preconditioning is required in order to achieve a sufficiently accurate solution
at an acceptable computational cost. Furthermore, a posteriori error analysis
which takes into account algebraic errors and allows to construct appropriate
stopping criteria becomes an inherent part of the algorithm.

This contribution recalls some views to iterative algebraic computations with
emphasize on the interplay between modelling, discretization, analysis and com-
putation. Efficiency of algebraic computations and their analysis depend on the
knowledge of the context in solving the original infinite dimensional (physically
motivated) problems. On the other hand, algebraic analysis can bring in issues
such as non-asymptotic reasoning and investigation of numerical stability which
can not be properly addressed by the functional analysis view.

After reviewing the whole concept we present particular examples illustrating
individual points.

15



Preconditioned solution of the coupled Stokes-Darcy flow
problem

Daniel B. Szyld
Temple University, Philadelphia, USA
szyld@temple.edu

We consider the numerical description of the coupled Stokes-Darcy flow, i.e., of
flow where one part of the domain is governed by a Stokes flow, and the other
corresponds to porous media flow, along with coupling conditions on the inter-
face. We propose the use of a constraint preconditioner for this problem. We
provide spectral bounds for the preconditioned problems, which are indepen-
dent of the size of the finite element mesh. We use both standard (continuous)
finite elements for both flows, and also consider the case where the porous media
flow is modeled with Discontinuous Galerkin methods. Numerical experiments
illustrate our results, and comparisons with other saddle-point preconditioners
found in the literature demonstrate the advantage of our approach. We also
illustrate the high order convergence of the Discontinuous Galerkin method for
this problem.

This is joint work with Prince Chidyagwai and Scott Ladenheim.

Enhancing eigenvector approximations of huge gyroscopic
eigenproblems from AMLS with subspace iteration

Heinrich Voss
Hamburg University of Technology, Hamburg, Germany
voss@tu-harburg.de

In this presentation we consider the problem to determine all eigenvalues in an
interval [0, λmax] and corresponding eigenvectors of a huge eigenvalue problem
Kx = λMx, where K and M are the stiffness and the mass matrices of a finite
element model.

A robust and efficient method is the subspace iteration method (SIM) which
was developed about 40 years ago by Bathe [1]. At that time a typical task was
to determine a small number of eigenmodes (10 to 20, e.g.) at the lower end of
the spectrum, but today often hundreds of eigenpairs are needed for problems
with millions of degrees of freedom [2,3].

Given a matrix V0 containing approximations to the wanted eigenvectors the
basic task in the jth step of SIM is to solve the block linear system KV̂k =
MVk−1 for V̂k and to M -orthonormalize the columns of V̂k to obtain the next

16



matrix Vk. Crucial for the success of SIM is to establish effective starting vectors
V0 and (in particular for huge problems) to solve the linear systems efficiently.

We propose to take advantage of automated multi-level sub-structuring
(AMLS) for both tasks which combines block Gaussian elimination and modal
reduction of sub-structures. Thus the size of the finite element model is reduced
substantially yet yielding approximations to eigenmodes of moderate accuracy
over a wide frequency range of interest. The essential steps of AMLS are the
following ones: using a graph partitioning tool the original structure is divided
into many substructures with multi levels. The stiffness matrix K is trans-
formed into block diagonal form K̃ by block Gaussian elimination, and the
eigenproblem is reduced by modal condensation of the substructure eigenprob-
lems. These two steps are performed in an interleaving way to avoid the storage
of the transformed mass matrix M̃ , which would require plenty of extra storage.

Information from ASML is used in SIM exploiting the block-structure of
K̃ but avoiding the use of the dense matrix M̃ . To this end the current ap-
proximation Ṽk−1 is back transformed to Vk−1 in the original FEM basis, Vk−1

is multiplied by the original mass matrix M , MVk−1 is transformed to some
matrix Z̃k in the AMLS basis, and finally K̃Ṽk = Z̃k is solved. Numerical
experiments demonstrating the efficiency of this approach are given in the pre-
sentation, details are contained in the joint paper [3] with Pu Chen and Jiacong
Yin, Peking University.

References

[1] K.-J. Bathe, E.L. Wilson: Large eigenvalue problems in dynamic analysis.
J. Engrg. Mech. Div. 98 (1972), 1471–1485.

[2] K.-J. Bathe: The subspace iteration – Revisited, to appear in Computers &
Structures.

[3] J. Yin, H. Voss, P. Chen: Improving eigenpairs of automated multilevel sub-
structuring with subspace iteration, to appear in Computers & Structures.
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Contributed Talks

Preconditioning of Krylov subspace methods using recycling
in Lattice QCD

Nemanja Božović
University of Wuppertal, Germany
bozovic@math.uni-wuppertal.de

Many applications in computational science and engineering require the solu-
tion of sequences of slowly changing linear systems. We focus on problems
arising in Lattice QCD simulations. While computing masses of elementary
particles, we have to solve a linear system with a Dirac operator in each time
step of the hybrid Monte-Carlo simulations. This operator changes just slightly
from time step to time step. While recycling subspace information from the
previous system like described in [1] reduces the number of necessary matrix-
vector multiplications, the systems are still expensive to solve. To overcome
this limitation, we include preconditioning in our implementation.

We will present the approach and the results obtained, including the use of
a Schwarz preconditioner.

References

[1] Michael L. Parks, Eric de Sturler, Greg Mackey, Duane D. Johnson and
Spandan Maiti: Recycling Krylov subspaces for sequences of linear systems.
SIAM Journal on Scientific Computing. 28 (1992), 1651–1674.

19



On the problem of interface weights in domain
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In many domain decomposition methods, an important question is how to av-
erage a discontinuous function at the interface between adjacent subdomains.
Two standard approaches commonly found in literature are: (i) arithmetic
average, based simply on counting number of subdomains at an interface un-
known, and (ii) weighted average, with weights derived from diagonal stiffness
of subdomain Schur complements with respect to the interface. Its simplifica-
tion represents approximation of the diagonal of the Schur complement by the
diagonal of the original matrix, also known as the stiffness scaling [3]. (The
applicability of the so called ρ-scaling, see e.g. [3] or [4] for theoretical analysis,
is limited to the case of material coefficients constant on each subdomain, which
is not preserved in our examples and consequently this approach is not included
in this study.)

In our work we study performance of these standard choices on a series of
two-dimensional numerical experiments with the Poisson equation. In addition
to the standard approaches, two new methods are included – averaging based
on a unit jump on the interface, and a new approach based on a unit load
applied on boundary of a subdomain, both described in [1]. Regular and irreg-
ular subdomains were used for testing, and also jumps in material coefficients
were present, with different alignment with respect to interface. The Balanc-
ing Domain Decomposition by Constrains (BDDC) method [2] is used for this
study.

No approach is shown to be universally superior to others. The two new
approaches are shown to be competitive with the standard ones; in certain
situations they can be preferable.
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National Supecomputing Center – new opportunities and
challenges

Zdeněk Dostál
VŠB-TU Ostrava, Czech Republic
zdenek.dostal@vsb.cz

We first briefly recall the development of HPC in Ostrava from the early mod-
est results in iterative solution of large (by then standards) problems motivated
by the needs posed by mining engineering, with grateful acknowledgement of
the role of the birthday person and his summer schools, to establishing the
systematic research in HPC related fields within the National Supercomput-
ing Center. The traditional research was transformed toward the development
of scalable massively parallel algorithms for the solution of problems of com-
putational mechanics and other fields. A true breakthrough is related to the
participation in the Partnership for Advanced Computing in Europe (PRACE)
project. The project supports access to the European supercomputer centers,
including Tier 0. Both the senior and young researchers from the HPC related
research programs participated in the specialized workshops, got new skills, im-
plemented powerful software, and entered the international cooperation. The
scope of the research was extended by new highly qualified staff, often hired
abroad. For example, the numerical research includes the multiscale problems,
multiphysics problems, aposteri error estimates, and adaptive discretization.
The group working in molecular dynamics was strengthened by the young staff
of physicists and computer scientists. The solution of external problems by the
fast boundary element methods found applications in magnetooptics. Interest-
ing applications of dynamic systems were found in economy and mechanics, in
particular in the analysis of rotor dynamics. An overview of the research will
be accompanied by applications.
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DG for fluid-structure interaction problems
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The contribution will be concerned with the simulation of viscous compressible
flow in time dependent domains. The motion of the boundary of the domain
occupied by the fluid is taken into account with the aid of the ALE (Arbitrary
Lagrangian-Eulerian) formulation of the Euler and Navier-Stokes equations de-
scribing compressible flow. They are discretized in space by the discontinuous
Galerkin (DG) finite element method using piecewise polynomial discontinuous
approximations. For the time discretization BDF method or DG in time is
used. Moreover, we use a special treatment of boundary conditions and shock
capturing, allowing the solution of flow with a wide range of Mach numbers.
As a result we get an efficient and robust numerical process. The applicability
of the developed method will be demonstrated by some computational results
obtained for flow induced vibrations of an airfoil with two degrees of freedom.

References
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A philosophical note on the origin of smoothed aggregations
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We derive the smoothed aggregation two-level method from the variationalob-
jective to minimize the final error after finishing the entire iteration. This
contrasts to a standard variational two-level method, where the coarse-grid
correction vector is chosen to minimize the error after coarse-grid correction
procedure, which represents merely an intermediate stage of computing. Thus,
we enforce the global minimization of the error. The method with smoothed
prolongator is thus interpreted as a qualitatively different, and more optimal,
algorithm than the standard multigrid.
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Double preconditionings of IDR(s)Stab(`) method for
gaining both convergence rate and accuracy of approximated
solutions

Seiji Fujino
Research Institute for Information Technology, Kyushu University, Japan
fujino@cc.kyushu-u.ac.jp

We consider to solve a linear system of equations Ax = x, where A is a given
large sparse N ×N nonsymmetric matrix and x, b are solution, right-hand side
vectors of order N , respectively. Sonneveld and van Gijzen proposed IDR(s)
methods and IDR Theorem in 2007. This iterative method has a property that
it requires at most N +N/s matrix-vector multiplications to compute an exact
solution in exact arithmetic mode. As variants of Bi-CG method, Sleijpen et
al. derived IDR(s)Stab(`) method as extension of BiCGStab(`) method, and
Tanio et al. derived also GBi-CGSTAB(s, `) method by adapting polynomial of
high order degree of ` to Bi-CG(s) and GBi-CG(s).

Concerning IDR(s) method, it is well known that, for large parameter s,
there occasionally occurs spurious convergence phenomenon, i.e., the residual
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computed in the algorithm being small, though the true residual is not small.
As well as IDR(s) method, IDR(s)Stab(`) and GBi-CGSTAB(s, `) methods
have the same property that spurious convergence occasionally occurs during
iteration process.

In our talk, we propose double preconditioning strategies for IDR(s)Stab(`)
and GBi-CGSTAB(s, `) methods in order to gain both convergence rate and
accuracy of approximated solutions We present the numerical results that our
preconditioning strategies work effectively in Table 1(a)-(c). “TRR” means
True Relative Residual of log10(||b − Axk+1||2/||b − Ax0||2) for the converged
approximated solutions xk+1. From this Table 1, we see that double precondi-
tioning strategies is very effective in view of convergence rate and improvement
of accuracy of the approximated solutions.

Table 1: Numerical results of IDR(s)Stab(`) method for matrix dc3.
(a)without preconditioning

s ` IDR(s)Stab(`) new IDR(s)stab(`)
itr. time TRR itr. time TRR

4 1 824 3.78 -7.67 932 3.39 -9.74
4 2 854 4.60 -7.38 957 4.20 -9.76
4 4 904 5.79 -7.24 956 5.17 -9.71
4 6 1,024 7.83 -5.38 1,002 6.57 -9.75
4 8 1,084 9.58 -5.50 1,010 7.83 -9.71

(b)with ILU(0) preconditioning

s ` IDR(s)Stab(`) new IDR(s)stab(`)
itr. time TRR itr. time TRR

4 1 369 2.52 -7.13 404 2.38 -10.91
4 2 414 3.08 -6.15 435 2.80 -10.63
4 4 444 3.84 -6.04 451 3.43 -10.87
4 6 424 4.19 -2.63 457 4.01 -11.31
4 8 484 5.35 -0.69 444 4.43 -8.88

(c)with modified Eisenstat-SSOR preconditioning

s ` IDR(s)Stab(`) new IDR(s)stab(`)
itr. time TRR itr. time TRR

4 1 374 2.11 -10.47 374 1.78 -10.78
4 2 384 2.34 -9.77 397 2.06 -10.71
4 4 384 2.79 -9.21 385 2.45 -10.73
4 6 394 3.36 -6.87 394 2.95 -10.68
4 8 364 3.51 -5.16 404 3.49 -10.63
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A smoothed aggregation MG method with small coarse
space.
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We describe a general technique of aggressive coarsening in the framework of
smoothed aggregation multilevel methods for the solving of elliptic type prob-
lems. This technique can be viewed as an alternative to domain decomposition
method since as in this class of methods, it results in the solving of small coarse
grid problem associated with parallel sub-domain solvers. The method, using a
transformed Chebyschev polynomial (smoother) S = pol(A), changes the orig-
inal problem Ax = f into S2Ax = S2f . This problem is solved by a general
multilevel method, with a small coarse space. The previous procedure is com-
bined with a smoothing on the original problem Ax = f , using the smoother
associated to the error propagation operator S. We prove a general convergence
result and apply it to a variational two-level method and a variational multi-
grid. In both cases, we prove that the convergence rate is independent of the
first and second level resolution. Concerning computational costs, the proposed
method is asymptotically superior to domain decomposition methods and opens
the possibility for a better level of parallelism. Numerical experiments will be
presented to assess the efficiency of the method. We will show in particular
that in contrast to standard multigrid methods that require semi-coarsening to
conserve their efficiency, this method can be efficient even for problems with
anisotropies. For instance, for the following elliptic problem :

(1) −
(
∂2

∂x2
+ ε

∂2

∂y2
+

∂2

∂z2

)
u = f on Ω = (0, 1)3, u = 0 on ∂Ω.

the table below shows a mild dependence of the convergence rate on the degree
of anisotropy (ε).

512 000 dofs, coarse space 512 dofs, deg(S) = 7, H/h = 9.
ε rate of conv no. iter.

1000 0.321 19
100 0.241 15
10 0.137 11
1 0.131 11

0.1 0.221 14
0.01 0.317 19
0.001 0.300 18
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Applications of AMG methods based on aggressive
coarsening and polynomial smoothing

Pavla Fraňková, Milan Hanuš, Hana Kopincová, Roman Kužel,
Petr Vaněk, Zbyněk Vastl
University of West Bohemia, Pilsen, Czech Republic
mhanus@kma.zcu.cz

In this contribution, we present numerical results obtained by using the novel
multigrid methods based on aggressive coarsening and polynomial smoothing.
The focus will be on real-world problems arising in nuclear engineering, includ-
ing the numerical modeling of reactor cores of the two Czech nuclear power
plants as well as the research reactor located at the Czech Technical University
in Prague. One of the important problems encountered in practical computa-
tional nuclear engineering is the solution of large-scale eigenvalue problems with
complicated geometries and material data leading to unacceptably slow conver-
gence rates of standard iterative methods. The novel evolving coarse-space
method, presented in an accompanying contribution, is particularly suitable for
solving these kinds of problems with very strict calculation time constraints.
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Numerical experiments of preconditioned iterative Krylov
methods and multigrids methods for an elliptic partial
differential equation in generalised coordinates

Yasuyoshi Horibata
Hosei University, Japan
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The solutions to the Laplace equation

(1)
∂2φ

∂x2
+
∂2φ

∂y2
= 0 in Ω

are sought in the domain shown in Figure 1 with the Dirichlet boundary con-
ditions.

Figure 1 Solution domain for the Laplace equation.
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Figure 2 Deformed solution domain and grid.

The solution domain is deformed by moving the point X as shown in Figure 2.
The Laplace equation in generalised coordinates ξ, η becomes

−
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J
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J
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)
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+
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J

)
φ
}
ηη

= 0

28



The equation is discretized using three-point centered difference scheme. The
resulting linear system Ax = b is solved. The non-zero entries of A are
ak,k−I−1, ak,k−I , ak,k−I+1, ak,k−1, ak,k, ak,k+1, ak,k+I−1, ak,k+I , ak,k+I+1. The system
is solved by iterative Krylov methods and multigrid methods. Iterative Krylov
methods include BCG, CGS, BCGSTAB, BCGTAB2, GPBCG, BCGSafe, BCR,
CRS, BCRSTAB, BCRSTAB2, GPBCR, BCRSafe, GMRES. They are precon-
ditioned by ILU and MILU. Multigrid methods are geometric multigrid (dis-
cretization coarse grid approximation, Galerkin coarse grid approximation) and
algebraic multigrid. Table 1 shows the CPU time on a common workstation for
the methods on a 7682 grid. The result shows that MILU greatly improves the
efficiency of the iterative Krylov methods.

Table 1: CPU time (s) on a 7682 grid

Method Preconditiong or Approximation rx = 1 rx = 2 rx = 3

BCG ILU 92 78 68
MILU 26 20 18

BCR ILU 136 114 98
MILU 37 31 26

CGS ILU 64 52 46
MILU 19 13 12

CRS ILU 68 57 50
MILU 17 14 12

BCGSTAB ILU 71 60 50
MILU 18 16 12

BCRSTAB ILU 75 62 55
MILU 20 15 13

GPBCG ILU 90 79 66
MILU 22 18 16

GPBCR ILU 111 78 70
MILU 23 18 16

BCGSTAB2 ILU 96 79 70
MILU 26 18 16

BCRSTAB2 ILU 97 83 73
MILU 26 19 16

BCGSafe ILU 83 72 61
MILU 20 16 14

BCRSafe ILU 96 72 64
MILU 21 17 15

GMRES(k) k=30 ILU 459 337 272
k=20 MILU 34 30 27

Geometric MG DCA (7-grid) 8.6 117 ∞
GCA (7-grid) 9.5 8.0 8.0

Algebraic MG – 8.7 8.5 8.9
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Multilevel ILU preconditioning for iterative solution of
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We consider the problem of numerical solution of sparse unsymmetric non-
singular linear systems using threshold-based Incomplete LU preconditioned
BiCGStab iterations. We present a multilevel ILU preconditioning (MLILU)
based on (recursive) reordering and 2 × 2 block splitting, which guarantees
strong diagonal dominance in the leading block of a possibly large dimension.

The idea of the method is due to Saad [4]; however, we use a different
procedure for the construction of such reordering and splitting, which was first
presented in [1] and is essentially based on 2-side scaling of the matrix which
approximately equilibrates its row and column norms. Based on [1, 2], some
theoretical evidence supporting the proposed algorithm is given, including the
upper bounds for the fill-in for the ML-ILU triangular factors.

Results of numerical testing on sample matrices from the University of
Florida are given. Moreover, we present some results obtained for hard-to-solve
linear systems arising in real-life oil and gas simulation.

Table 1. Total solution time (s) for test problems
with matrices from University of Florida collection

matrix n nz(A) tPARDISO tMLILU

language 399130 1216334 1191.3 6.7
torso3 259156 4429042 49.4 9.5
ohne2 181343 6869939 44.0 14.0
atmosmodl 1489752 10319760 1291.0 61.1
rajat31 4690002 20316253 58.0 67.2

In Table 1, our fast and reliable implementation of the MLILU-BiCGStab
solver is compared with the well-known PARDISO package based on highly
optimized direct sparse LU-decomposition (the timings for the latter were taken
from [3]). Note that the timings for MLILU were obtained on a slower desktop
PC AMD compared to that of PARDISO using one Intel Xeon core.

A simple coarse-grained parallel version of the algorithm, which has satis-
factory efficiency for a moderate number of processors, is also discussed.
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Additive Schur complement approximation: Theory and
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The method of additive Schur complement approximation (ASCA) has been
introduced in [1] and more recently studied in context of high-frequency high-
contrast problems, cf. [2]. In this talk we present its theoretical analysis in
the framework of auxiliary space preconditioning. Moreover, a multilevel al-
gorithm is proposed that recursively extends a general two-level method based
on exact two-level block factorization of local (finite element stiffness) matrices
related to a partitioning of the domain into overlapping or non-overlapping sub-
domains. The size and the overlap of the subdomains control the sparsity of the
coarse-grid operator which is defined via ASCA. The robustness of the proposed
method for high-contrast multiscale problems is proved and demonstrated by
numerical experiments. Further, aspects of parallelization and possible appli-
cations of auxiliary space multigrid methods are discussed.
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Skew-symmetric preconditioners for strongly nonsymmetric
linear equation systems 1

Lev Krukier, Boris Krukier, Olga Pichugina
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Any matrix A can naturally be expressed as a sum of symmetric matrix A0

and skew-symmetric matrix A1. This splitting is named symmetric - skew-
symmetric spliting (SSS).

Consider the linear equation system

(1) Au = f,

where A is non-symmetric matrix, u is the vector of unknown, f is the vector
of the right part is considered.

Iterative method based on symmetric - skew-symmetric splitting was firstly
proposed for this business by Gene Golub [1].

If A0 is a positive definite than matrix A is named positive real. We will
name matrix A strongly non-symmetric if

‖A0‖∗ << ‖A1‖∗
where‖&‖∗ is some matrix norm.

It is well known, that difficulties to solve such linear equation systems grows
up because matrix can lose property of diagonal dominant. Skew-symmetric
iterative methods (SSIT) for these cases have been proposed [2].

Let us approach (1) by considering the iterative methods of the following
form:

(2) yn+1 = Gyn + τB−1f, G = B−1(ω)(B(ω)− τA),

where f, y0 ∈ H,H is an n-dimensional real Hilbert space, f is the right part
of (1), A, B(ω) are linear operators (matrices) in H, A is given by equation
(2), B(ω) is invertible, y0 is an initial guess, yk is the k-th approach, τ, ω > 0
are iterative parameters, u is the solution that we obtain, ek = yk − u and
rk = Aek denote the error and the residual in the k-th iteration, respectively.

Consider the next choice of operator B. The class of triangular skew-
symmetric iterative methods is defined by (2) with the matrix B being chosen
as

(3) B(ω) = Bc + ω((1 + j)KL + (1− j)KU), j = ±1, Bc = B∗c .

The class of product triangular skew-symmetric iterative methods is defined
by (2) with the matrix B being chosen as

(4) B = (BC + ωKU)B−1C (BC + ωKL), Bc = B∗c ,

1The work was supported by RFBR (grant No. 12-01-00022-a)
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where KL +KU = A1, KL = −K∗U , BC = B∗C .
Operator BC can be chosen arbitrarily, but has to be symmetric. These

methods are from class of SSIT and called as two-parameters triangular(TTM)
and product triangular (TPTM) method. Convergence of TTM and TPTM
has been considered and proved. We compare TTM to the conventional SOR
procedure and TPTM to the conventional SSOR procedure.

For the check of TPTM behavior, the standard 5-point central difference
scheme on the regular mesh has been used for approximation of the convection-
diffusion equation with Dirichlet boundary conditions and small parameter at
the higher derivatives in the incompressible medium and it’s transformation
by regular ordering to strongly non-symmetric linear equation systems. In the
case of central difference approximation of the convective terms operator A
can naturally be expressed in a sum of symmetric positive definite operator
A0, which is a difference analogue of the Laplace operator and skew-symmetric
operator A1, which is a difference analogue of the convective terms.

Numerical experiments show that in considered particular cases the behavior
of methods is closely related to the technique of choosing the matrix BC .
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The evolving coarse-space method for generalized eigenvalue
problem
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We introduce a two-level method with evolving coarse-space for finding smallest
eigenvalue and the corresponding eigenvector for mutual eigenvalue problem
Ax = λBx. We suppose that matrix A is invertible and the eigenvalue is real
and positive. Solving of such type of problems are important in nuclear reactor
criticality calculations for example.

For x being the fine-level approximation of the solution, the coarse-space V =
V (x) is constructed so that x satisfies x ∈ V . This is achieved by adding the
vector x as a first column of the prolongator. (The columns of the prolongator
P form a computationally relevant basis of the coarse-space V = Range(P ).)
The cost of enritching the coarse-space V by the current approximation x is a
single dense column of the prolongator that has to be updated each iteration.

The efficiency of presented method will be demonstrated on several numerical
experiments. The computations were performed on GPU Nvidia Tesla M2090.
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Characterization of worst-case GMRES
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The GMRES method for solving the linear algebraic system Ax = b with the
initial guess x0 = 0 generates a sequence of iterates xk, so that the corresponding
kth residual rk ≡ b− Axk satisfies

(1) ‖rk‖ = min
p∈πk
‖ p(A)b ‖ .

Here ‖ · ‖ denotes the Euclidean norm, and πk denotes the set of polynomials
of degree at most k and with value one at the origin. For simplicity, suppose
that ‖b‖ = 1.

A common approach for investigating the GMRES convergence behavior is
to bound the right hand side in (1) independently of b. For each iteration step k
the best possible bound on the GMRES residual norm that is independent of b
is given by maximizing the right hand side of (1) over all unit norm vectors,

(2) ‖rk‖ = min
p∈πk
‖ p(A)b ‖ ≤ max

‖v‖=1
min
p∈πk
‖ p(A)v ‖ ≡ Ψk(A) .

The quantity Ψk(A) is called the kth worst-case GMRES approximation. The
upper bound given by (2) is sharp in the sense that for each given A and k
there exists a unit norm initial vector b so that the corresponding kth GMRES
residual vector satisfies ‖rk‖ = Ψk(A).

The focus of this talk will be on mathematical characterizations of the worst-
case GMRES approximation problem on the right hand side of (2). It will be
shown that initial vectors for which the value Ψk(A) is attained satisfy an
intriguing algebraic equality, which has been called the “cross equality”. More-
over, it will be shown that for given A and k there may exist different polyno-
mials from the set πk and corresponding different initial vectors which attain
the same worst-case value Ψk(A). The non-uniqueness of worst-case GMRES is
somewhat surprising, since the closely related “ideal GMRES” approximation
problem always has a uniquely defined solution. It represents one of the chal-
lenges in the numerical and mathematical analysis of the worst-case GMRES
problem.

The talk will be based on joint work with Vance Faber and Petr Tichý [1].

References
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Auxiliary space multigrid method for flows in porous media

Maria Lymbery
IICT-BAS, Bulgaria
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We consider the mixed finite element approximation of Darcy’s law in porous
media where the flux and the pressure variables are approximated in the lowest-
order Raviart-Thomas space and the space of piece-wise constant functions,
respectively. The arising indefinite system is solved by the MINRES method
using a block-diagonal symmetric positive definite preconditioner. The appli-
cation of the latter is accomplished by applying an auxiliary space multigrid
method to solve the subproblem related to the flux component. The key for
achieving uniform convergence is to use an additive Schur complement approx-
imation (ASCA), which has been studied earlier for conforming discretizations
of scalar elliptic problems, [1, 2]. Based on a proper covering of the domain
by overlapping subdomains the ASCA and thus the resulting method is robust
with respect to arbitrary jumps of the (piecewise constant) permeability. Nu-
merical experiments demonstrating the performance of the proposed multigrid
algorithm are conducted.

This is a joint project with Johannes Kraus from RICAM-ÖAW, Austria
and Svetozar Margenov from IICT-BAS, Bulgaria.
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A low-rank tensor method for large-scale Markov Chains
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A number of practical applications lead to Markov Chains with extremely large
state spaces. Such an instance arises from models for calcium channels, which
are structures in the body that allow cells to transmit electrical charges to each
other. These charges are carried on a calcium ion which can travel freely back
and forth through the calcium channel. The state space of a Markov process
describing these interactions typically grows exponentially with the number of
cells. More generally, Stochastic Automata Networks (SAN s) are networks of
interacting stochastic automata. The dimension of the resulting state space
grows exponentially with the number of involved automata. Several techniques
have been established to arrive at a formulation such that the transition ma-
trix has Kronecker product structure. This allows, for example, for efficient
matrix-vector multiplications. However, the number of possible automata is
still severely limited by the need of representing a single vector (e.g., the sta-
tionary vector) explicitly. We propose the use of low-rank tensor techniques
to avoid this barrier. More specifically, an algorithm will be presented that al-
lows to approximate the solution of certain SAN s very efficiently in a low-rank
tensor format.

This is a joint work with Prof. Daniel Kressner (École Polytechnique Fédérale
de Lausanne, Switzerland).

TRACEMIN-Fiedler: Reducing the weighted bandwidth of a
matrix in parallel

Giorgos Kollias1, Murat Manguoglu2, Faisal Saied1, Ahmed Sameh1
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2 Department of Computer Engineering, Middle East Technical University,
Turkey
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Fiedler vector [2] is an indispensable tool in spectral graph analysis. It es-
sentially maps each graph node onto the real line in such a way that heavily
connected nodes are kept close together. Specifically assuming, for simplicity,
an undirected graph G with positive edge weights and A its (symmetric, non-
negative) adjacency matrix, we define its weighted Laplacian L as a matrix
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with entries lii = Σkaik on the diagonal and lij = −aij otherwise. The Fiedler
vector xF is then L’s eigenvector corresponding to its second smallest eigen-
value λ2 > 0, i.e. LxF = λ2xF . Note that the smallest eigenvalue for L always
vanishes and corresponds to the case when we assign the same coordinate to
all graph nodes - for single component graphs - or the nodes of each of the
components in the general case of multiple component instances. In the case of
k components, λ1 = 0 will generally pair to k linearly independent eigenvectors
xi with Lxi = 0, i = 1, . . . , k so the non-trivial Fiedler vector xF will be the
(k+ 1)th eigenvector in this ascending eigenvalue ordering, xF = xk+1. It easily
follows that x>Lx is non-trivially minimized for normalized x = xF in all cases,
and this accounts for the aforementioned collocation property of xF for heavily
connected nodes.

In particular, we advocate the use of the Fiedler vector as a tool for the sym-
metric permutation of the matrix of coefficients A in a linear system of the form
Ax = b, with the intention of moving heavy elements closer to the diagonal. So
we target the reduction of the effective matrix bandwidth in order to identify
an envelope for the construction of efficient preconditioners used in the subse-
quent iterative solution of the permuted system. By employing a preprocessing
transformation A← (|A|+ |A>|)/2, the coefficient matrix can be viewed as the
adjacency matrix of a positively weighted, undirected graph. In this setting our
intention translates, for each nonzero aij, to keeping |i− j| minimal, i.e. closer
to the diagonal, for any nodes i, j that are heavily connected. On the other
hand as mentioned, the Fiedler vector will assign coordinates to nodes to keep
essentially |xF,i−xF,j| small for such heavily connected pairs (collocation prop-
erty). It is exactly this fact that drives our approach for selecting the ordering
computed in xF as an intuitively attractive, bandwidth-reduction permutation
[1].

We have developed TRACEMIN-Fiedler [4], a parallel algorithm based on
Trace Minimization [5], which is a symmetric eigenvalue problem solver, to
compute xF of L. This is based on the idea that L, if projected on the subspace
spanned by the eigenvectors corresponding to its smallest eigenvalues will be a
diagonal matrix with minimal trace, i.e. the sum of these smallest eigenvalues.
So in search for these eigenvectors, and xF in particular, we iteratively compute
corrections perpendicular to the current basis, however always trying to mini-
mize the associated trace in doing so; this minimization in turn necessitates solv-
ing a saddle point problem for the correction at each iteration step. Although,
solving a large linear system at each iteration might seem expensive one can
take advantage of the following: (i) the cofficient matrix is the Laplacian matrix
with a strong diagonal, (ii) sparse matrix vector multiplication can be computed
in parallel and (iii) those saddle point linear systems only need to be solved ap-
proximately. TRACEMIN-Fiedler is implemented in Fortran, using both message
passing and shared address space paradigms (enabled respectively by MPI calls
and OpenMP directives). It compares favorably with MC73 FIEDLER [3], the
state-of-the art serial code in Harwell Subroutine Library (HSL) being heav-
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ily optimized for the Fiedler vector computations. Experiments demonstrate
over two orders of magnitude speedup in time-to-permutation, in some matrix
instances and cluster configurations, while retaining the bandwidth-reduction
properties of computed xF ’s induced permutation (accuracy).

Our initial implementation was designed for matrices whose graph has a sin-
gle component. We have added the ability to handle multi-component graphs
through two additional modules: (i) a preprocessing module that identifies the
graph components and treats each of them as a separate matrix, i.e. of a
single-component graph support; in doing so, it also avoids the overhead of
having to call into TRACEMIN-Fiedler even for small component matrices, uti-
lizing standard sequential eigensolvers instead, (ii) a postprocessing module that
composes Fiedler-induced permutations as returned by the eigensolvers with
the component-revealing one captured at preprocessing, to produce the final
permutation.

We experiment with a set of matrices covering a broad spectrum of applica-
tion domains and ranging in size between some hundreds of thousands to a few
millions of nodes. Preliminary tests indicate that our updated codes can now
address multicomponent graphs at a fraction of time compared to the state-
of-the-art approaches, also at competitive quality rates. Being parallel, these
codes do not suffer the scalability problems of MC73 FIEDLER and thus they
could be used for the efficient generation of bandwidth-reduction permutations
for large systems of linear equations.
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Numerical solution of the incompressible Navier-Stokes
equations by multigrid method
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We propose some approaches for solving the incompressible Navier-Stokes equa-
tions.

We consider classical formulation of the Navier-Stokes equation:
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∂u
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∂u
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+
∂v

∂y
= f3,

where Re is Reynolds’s number, V = (u (x, y, t), v(x, y, t)) is the velocity
and P is the pressure.

To approximate the time derivative method of characteristics is used. Space
discretization is carried out by finite element method. It’s used a mixed formu-
lation, when a combinations of simple finite elements – bilinear for velocities
and constant elements for pressure are applied [1].

After discretization we obtain a linear algebraic equation system with a sym-
metric matrix which has a spectrum with alternating signs. We use multigrid
method for solving this system. Multigrid methods are proving themselves as
very successful tools for the solution of the algebraic equation systems associated
with discretization of boundary-value problems. MGM is not a fixed multigrid
algorithm. There is rather a multigrid technique fixing only the framework
of the algorithm. The efficiency of the multigrid algorithm depends on the
adjustment of its components to the problem in question [2].

Some numerical results are presented.
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Partitioning reachable state space into product state spaces
for multilevel methods
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Discrete event dynamic systems with interacting subsystems can be specified
with various high-level formalisms and then mapped to a multi-dimensional
Markov chain. The reachable state space of such a Markov chain is usually a
proper subset of its product state space [2]. Efficient implementation of multi-
level methods requires the set of reachable states to be represented as a union
of Cartesian products of subsets of subsystem state spaces. Currently there are
only ad hoc methods that can be used to this end. In this talk, we discuss how a
given multi-dimensional reachable state space can be automatically partitioned
into Cartesian products of subsets of subsystem state spaces using ideas from
combinatorics [1].
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Reaching a consensus: A nonlinear case
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Historically, the idea of reaching consensus through repeated averaging was
introduced by DeGroot [1], for a structured, time-invariant, and synchronous
environment. For reasons of self-exposition, it is convenient to first provide a lin-
ear model for an estimate-modification process of a structured, time-invariant,
and synchronous environment which was presented in [1] and [3].

Consider a group of m individuals, each of whom can specify his or her own
subjective probability distribution for the unknown value of some parameter θ.
Suppose the m individuals must act together as a team or committee.

For i = 1, · · · ,m, let x
(0)
i denote the subjective probability distribution

that individual i assigns to the parameter θ. The subjective distributions,

x
(0)
1 , · · · , x(0)m , will be based on the different backgrounds and different levels of

expertise of the members of the group. It is assumed that if individual i is
informed of the distributions of each of the other members of the group, he/she
might wish to revise his/her subjective distribution to accommodate this in-
formation. In the DeGroot’s model [1], it was assumed that when individual i
makes this revision, his/her revised distribution is a linear combination of the

distributions x
(0)
1 , · · · , x(0)m . Let Pij denote the weight that individual i assigns

to x
(0)
j when he/she makes this revision. It was assumed that the Pij ≥ 0 and

m∑
j=1

Pij = 1. So, after being informed of the subjective distributions of the other

members of the group, individual i revises his/her own subjective distribution

from x
(0)
i to x

(1)
i =

m∑
j=1

Pijx
(0)
j .

Let P denote the m×m matrix whose (i, j)th element is Pij. It is clear that P
is a stochastic matrix since the elements are all non-negative and the rows sum

to one. Let x(0) = (x
(0)
1 , · · · , x(0)m ) and x(1) = (x

(1)
1 , · · · , x(1)m ) be vectors. Then

the vector of revised subjective distributions can be written as x(1) = Px(0).
The critical step in this process is that now the above revision is iterated.

It is assumed that after individual i is informed of the revised subjective dis-

tributions, x
(1)
1 , · · · , x(1)m of the members of the group, he/she revises his/her

subjective distribution from x
(1)
i to x

(2)
i =

m∑
j=1

Pijx
(1)
j . The process continues in

this way.
Let x(n) denote the subjective distribution of individual i after n revisions.

Then x(n) = Px(n−1) = Pnx(0). DeGroot states [1] that a consensus is reached if
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and only if all m components of x(n) converge to the same limit as n→∞.
In [2], Chatterjee and Seneta consider a generalization of DeGroot’s model

in which the individuals can change their weights Pij at each iteration.
In this paper, we shall consider a nonlinear model for an estimate-modification

process of a structured, time-varying, and synchronous environment. Namely,
we suppose that every individual makes a revision of his/her subjective distri-
bution as a nonlinear combination of the previous distributions. More precisely,
in our nonlinear model, after being informed of the subjective distributions
of the other members of the group, individual i revises his/her own subjec-

tive distribution from x
(0)
i to x

(1)
i =

m∑
j,k=1

Pijkx
(0)
j x

(0)
k , where P = (Pijk)

m
i,j,k=1 is

a triple stochastic cubic matrix with non-negative entries i.e., Pijk ≥ 0 and
m∑
i=1

Pijk =
m∑
j=1

Pijk =
m∑
k=1

Pijk = 1 for any i, j, k = 1,m. In our nonlinear model,

the individuals can change their weights Pijk at each interaction.
In our nonlinear model for an estimate-modification process, we showed that

if in some interaction all weights Pijk are positive then consensus can be reached
in the environment.
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Block Krylov subspace recycling: Theory and application in a
Newton iteration
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We address the solution of a sequence of families of linear systems. For the ith
family, there is a base coefficient matrix Ai, and the coefficient matrices for all
systems in the ith family differ from Ai by a multiple of the identity, i.e.,

Aixi = bi and (Ai + σ
(`)
i I)x

(`)
i = bi for ` = 1 . . . Li,

where Li is the number of shifts at step i. This is an important problem arising
in various applications.

The recycled GMRES method (RGMRES) [1] is an extension of GMRES in
which the minimum residual projection is performed over an augmented Krylov
subspace. The formulation of RGMRES allows for minimization of the residual
over arbitrary augmented subspaces. For solving a sequence of linear systems,
this allows us to use a subspace of the search space generated when solving
system i to augment the Krylov subspace generated for system i+ 1.

We extend the machinery of RGMRES to minimize the residuals of the
shifted systems by direct projection. All approximations come from the same
augmented Krylov subspace, but for each shifted system, the approximation is
chosen such that the residual is orthogonal to a different constraint space. The
constraint spaces are chosen such that the approximations can be computed
efficiently. Upon convergence of the iteration for the base system, the shifted
system approximations have improved, but the iterations will not necessarily
have converged. In this situation, the method can be called recursively for
the remaining unconverged systems. We present analysis of this method and
numerical results involving systems arising in lattice quantum chromodynamics.
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The coupled problems describing the interactions of fluid flow with elastic struc-
ture are of great importance in many engineering applications. In the technical
practice typically the determination of the stability of the system is of inter-
est only, and thus the problem is modeled only in linear regime. Recently,
the research focuses also on numerical modeling of nonlinear coupled problems.
In this case the efficient approximation of very complex coupled problem is
needed. The mathematical model consists of fluid flow description, structure
motion equations and the interface conditions.

In this paper the problem of the numerical solution of fluid-structure inter-
actions shall be considered with the main attention paid to the flow problem,
its linearization and efficient solution of the arising system of linear equations
obtained by finite element approximation of structural and flow models, cf. [2].
The solution of the saddle point system is complicated particularly for the con-
sidered case of high Reynolds numbers, and the use of advanced stabilization,
cf. [1]. The choice of suitable preconditioner is discussed and the multilevel
method is applied. The practical implementation of the method in the finite
element based solver is considered and the comparison of the performance on a
number of two- and three dimensional cases is discussed.
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A detailed description of flow in porous media is essential for building mathe-
matical models with applications in, e.g., oil and gas recovery or nuclear waste
disposal. In order to set up a reliable geomodel, one needs to have a good
knowledge of the problem geometry and input parameters. The flow of water
in granite rock, which represents one of the suitable sites for nuclear waste
deposit, is conducted by the complex system of vugs, cavities and fractures
with various topology and sizes. These alter the effective permeability, and
therefore should be accurately accounted for in the geomodel. In the presented
approach, the fractures are assumed to contain debris and they are modeled as
porous media with specific permeabilities. The discretization is performed using
the mixed-hybrid finite element method (FEM) with the lowest order Raviart-
Thomas (RT0) elements. The resulting meshes are therefore unstructured, and
they combine different spatial dimensions (line elements in 1D, triangles in 2D,
and tetrahedrons in 3D) to model the effect of fractures. The systems of lin-
ear equations obtained from the FEM discretization are often very large and
typically ill-conditioned due to mixing of spatial dimensions, large jumps in per-
meability coefficients and presence of elements of considerably different sizes.
The matrices have a saddle-point structure

(1)

[
A BT
B −C

]
,

where A is symmetric and positive definite on the kernel of B, and C is symmet-
ric and positive semi-definite. The ‘penalty’ block C 6= 0 arises from connecting
meshes of different spatial dimensions.

We adapt the Balancing Domain Decomposition by Constraints (BDDC)
[2, 4] method to this type of problems. A new scaling operator in the BDDC
method suitable for the studied problems is also proposed. The mixed-hybrid
formulation allows to modify the saddle-point problem to the one which is
symmetric and positive definite. We eliminate the block A and ‘a bit more’
and introduce a symmetric and positive definite Schur complement with re-
spect to interface Lagrange multipliers, which correspond to a part of block C.
The reduced system is solved by the preconditioned conjugate gradient (PCG)
method, and the BDDC method is used as the preconditioner. We take advan-
tage of the special structure of the blocks in matrix (1) studied in detail in [3],
and in particular in [1].
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We describe our parallel implementation of the method and study its per-
formance on several benchmark and real world problems. The extensions have
been incorporated into our open-source solver library BDDCML, which has been
combined with the Flow123d package for subsurface flow simulations. Numeri-
cal experiments confirm efficiency and scalability of the developed approach on
up to 1024 computer cores (see Fig. 1).

10-1

100

101

102

103

101 102 103

ti
m

e 
[s

]

number of processors

set-up
PCG its.
total
optimal

Figure 1 A problem of a candidate site for a nuclear waste deposit: Example
division into 64 subdomains (left) and computing times for increasing number
of CPU cores (right). Unstructured mesh contains 2.1 million elements and 15
million unknowns. Data by courtesy of Jǐrina Královcová.
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[3] Maryška, J., Rozložńık, M., and Tůma, M.: Schur complement systems in
the mixed-hybrid finite element approximation of the potential fluid flow
problem. SIAM Journal on Scientific Computing 22 (2000), 704–723.

[4] Tu, X.: A BDDC algorithm for flow in porous media with a hybrid finite
element discretization. Electronic Transactions on Numerical Analysis 26
(2007), 146–160.

47



Application of the conjugate gradient method applied to a
matrix equation arising in learning machine dPLRM for
cancer diagnosis
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We develop a novel method for cancer diagnosis of biological specimens based
on the mass-spectrometry data obtained by the PESI (the Probe electrospray
ionization) inutriment. By applying the learning machine dPLRM(dual Penal-
ized Logistic Regression Machine) to the training data set, we were able to
diagnose RCC, HCC and MEC. The algorithm of the machine solves a ma-
trix nonlinear optimization problem by the CG-Newton method applied to an
interesting matrix equations.

Parallel block Jacobi SVD solvers

Martin Bečka, Gabriel Okša, Marián Vajteršic
Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia
Marian.Vajtersic@savba.sk

The Singular Value Decomposition (SVD) is one of the basic matrix decompo-
sitions with a very rich field of applications such as signal and image processing,
data retrieval, statistical data analysis, which are solved e.g. by means of least
squares and total least squares techniques. At the same time, the SVD is one of
the most complex algorithms in linear algebra; for a matrix of order n it requires
O(n3) floating-point operations and O(n2) memory locations (when computing
its full version with both left and right singular vectors). This high arithmetic
complexity has led to various algorithms that differ in main principles, matrix
pre-processing and accuracy of computed results when using the floating-point
arithmetic. For example, some algorithms compute only a partial SVD with a
subset of singular values close to some target. Most algorithms compute sin-
gular values only with a guaranteed absolute accuracy, so that computed tiny
singular values may not have any accurate digits at all.

The Jacobi method [5] was originally used by Jacobi in year 1846 for the
iterative solution of a linear system of equations of order eight that was derived
by applying the least-squares method to the measured positions of eight known
planets at that time (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus,
Neptune). The linear system was of the form (H−λI)x = 0 with H symmetric,
so in our terminology it was actually the eigenvalue problem, since the solution
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yielded both λ (the eigenvalue) and x (the eigenvector). The generalization for
the computation of the SVD of a rectangular matrix followed by Hestenes in [4].
It also became clear that, in contrast to the Eigenvalue Decomposition (EVD)
of square matrices, there exist two methods of the SVD that differ in a way the
matrix is diagonalized: either explicitly by applying two orthogonal transfor-
mations from left and right (the two–sided method), or implicitly by applying
the orthogonal transformations only from right (the one–sided method). The
one–sided variant is faster than the two–sided one due to the decrease of the
number of matrix–matrix multiplications.

Serial Jacobi SVD methods have some excellent numerical properties, espe-
cially they are able to compute singular values with a high relative accuracy.
However, they are inherently slow due to the necessary matrix updates via or-
thogonal transformations. This is the main reason why they were essentially
abandoned in 1950’s. The interest switched into the SVD computation by
means of matrix bidiagonalization and recently also to some projection meth-
ods like the Jacobi–Davidson SVD algorithm. However, recent development and
work of Drmač, Hari and Veselić have shown that the one–sided serial Jacobi
method with some very clever improvements (e.g., special ordering of annihila-
tion and matrix preprocessing) can be competitive to the well–known LAPACK
SVD algorithm of Golub and Rench based on the matrix bidiagonalization; see
[1, 2, 3].

Our work on the improvement of efficiency of the parallel two–sided block–
Jacobi method in last 13 years started with the generalization of an original
Jacobi idea of nullifying the largest magnitude element of a symmetric matrix in
each iteration step. We have formulated this approach for a block partitioning
of a large matrix and adapted it for the distributed memory paradigm of par-
allel computation where individual processors communicate by interchanging
messages. Thus, a new dynamic ordering was born, which takes into account
the actual status of the matrix off–diagonal norm. Since then, some other new
ideas, like optimal data transfer, optimal data layout and matrix preprocessing,
were subsequently applied to enhance the performance. We also got a new
insight into its convergence properties in dependence of the distribution of sin-
gular values. Recently, all these ideas, especially a new dynamic ordering based
on the estimation of principal angles between subspaces, were also used for the
parallel one–sided block–Jacobi method. This approach resulted in a significant
decrease of the number of parallel iteration steps needed for the convergence of
both methods.
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[5] Jacobi, C.G.J.: Über ein leichtes Verfahren die in der Theorie
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We review our two–level and multi–level methods with aggressive coarsening
and polynomial smoothing. Our methods can be percieved as a cheaper and
more flexible (in multilevel case) alternative to the domain decomposition meth-
ods. Also, our polynomial smoothers (that is, the sequence of the Richardson’s
iteration) can be performed using up to n = ord(A) processors and allow there-
fore for a better level of parallelism than the domain decomposition methods.
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In order to explore boundary feedback stabilization of coupled flow problems,
we consider the Navier-Stokes equations that describe instationary, incompress-
ible flows for moderate Reynolds numbers coupled with a diffusion convection
equation. Using a mixed finite element discretization, we get a differential-
algebraic system of differential index two. We show how to reduce this index
with a projection method [2] to get a generalized state space system, where a
linear quadratic control approach can be applied [3]. This leads to large-scale
saddle point systems which have to be solved in a threefold nested iteration.
For obtaining a fast iterative solution of those non-symmetric systems we de-
rive efficient block preconditioners based on the approaches due to Wathen et
al. [1, 4]. We use some algebraic multigrid method for the (1, 1)-block and
a Chebyshev semi iteration to approximate the Schur-complement in the pre-
conditioner. We demonstrate the feasibility of the arising nested iteration with
some recent numerical results.
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Recent experimental and theoretical advances in microstructural characteriza-
tion of heterogeneous media open novel possibilities in predictive “bottom-up”
modeling of engineering materials. There are currently a variety of techniques
being utilized to acquire a comprehensible digital representation of materials’
structure. With regard to the format of input data, the pixel- or voxel-based
methods appear to be a convenient choice for computational simulations of such
materials.

Exactly with these applications in mind, Moulinec and Suquet introduced
in [1] an efficient numerical approach to the numerical homogenization of de-
terministic periodic media based on the Fast Fourier Transforms. The method
builds on an iterative solution to an integral equation of the Lippman-Schwinger
type for the unit cell problem, with a kernel whose action can be efficiently
evaluated in the Fourier space. Since then, several improvements of the basic
scheme have been proposed, successfully applied to diverse problems, see e.g.
overviews in [2, 3, 4]. The aim of this contribution is to summarize our recent
results on the analysis and extensions of the Moulinec-Suquet scheme [4].

Our analysis rests of a variational formulation of the unit cell problem and
the Helmholtz decomposition of the periodic fields. By utilizing a certain pro-
jection operator, related to the kernel of the integral equation, we show that the
weak form is equivalent to the integral formulation. This allows us to demon-
strate that the original scheme [1] is equivalent to the Galerkin discretization
of the unit cell problem, with trigonometric polynomials [5] as the basis func-
tions. Utilizing the approximation theory available in [5] and standard tools of
finite element analysis, we obtain the convergence of the approximate solutions
to weak solution, along with convergence rates for sufficiently smooth data.
Moreover, using similar arguments, we show that the resulting non-symmetric
system of linear equations can be solved by the Conjugate Gradient algorithm,
as first experimentally observed in [2] and later studied in [3]. The trigono-
metric basis functions can be also conveniently applied to obtain guaranteed
two-sided bounds on the homogenized coefficients, thereby generalizing the re-
sults of Dvořák [6].

This is a joint work with Jaroslav Vondřejc (University of West Bohemia in
Pilsen) and Ivo Marek.
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The industrial machines are often programmed to function for long uninter-
rupted periods. Their reliability and their availability depend mainly on their
working regimes as well as their servicing and repairing methods i.e. their
maintainability. Better reliability and availability cannot be conceived with-
out a deep study of the various states in which the system of machines can be
at the time t and t + dt. The Markov chains constitute a powerful computa-
tional tool for the reliability and availability in the sense that the hypothesis of
the constant repair and failure rate is justified for complex systems, when we
investigate the reliability and the average availability of a park of machines.

In this paper, it is first of all, a question of evaluating these two parameters
(Reliability and Availability) then judging the necessary need of improving
them in order to increase the productivity of machines and to implement the
adequate means to reach this goal.
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Aggregation of coarse unknowns within the BDDC method
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Balanced domain decomposition methods for numerical solution of partial dif-
ferential equations exploit solutions to certain (small) coarse problems in order
to reduce the non-local parts of the error. Base functions of the coarse prob-
lem are polynomials on each element, continuous on each subdomain and fulfill
the minimal energy condition on every subdomain. These base functions are
defined by an appropriate dual space. We consider two kinds of degrees of free-
dom: values at corners and averages of nodal values along interfaces between
every pair of neighboring subdomains. The resulting coarse spaces can be large
enough and thus a further level of coarsening can be beneficial. We examine
several aggregation strategies of the algebraic multigrid for the coarse problems
for the diffusion equation and for the elasticity equation. For the elasticity
equation a special type of aggregation can be more advantageous than that
generally accepted.
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The total least squares (TLS) techniques, also called orthogonal regression and
errors-in-variables modeling have been developed independently in several ar-
eas. For a given linear (orthogonally invariant) approximation problem

AX ≈ B, where A ∈ Rm×n, B ∈ Rm×d, X ∈ Rn×d,

the TLS formulation aims at a solution of a modified problem

(A + E)X = B + G such that min ‖[G,E]‖F .

The algebraic TLS formulation has been investigated for decades, see the early
works [3], [2, Section 6], [8]. In [4] it is shown that even with d = 1 (which
represents a problem with the single right-hand side Ax ≈ b, where b is an
m-vector) the TLS problem may not have a solution and when the solution
exists, it may not be unique. For d > 1, the classical book [9] analyzes only two
representative cases characterized by the special distribution of singular values
of the extended matrix [B,A]. A general case is not analyzed—it is considered
only as a perturbation of one of the special cases. The so called classical TLS
algorithm given in [9] computes some output X for any data A, B, but the
relationship of the output X to the original problem is, however, not clear.

The single right-hand side problem has been recently revisited in the pa-
per [7]. Here it is shown that the problem does not have a solution when the
collinearities among columns of A are stronger than the collinearities between
R(A) and b. An analogous situation may occur for d > 1, but here different
columns of B may be correlated with different subsets of columns of A. In our
contribution we try to fill this gap and investigate existence and uniqueness of
the solution of the TLS problem with d > 1 in full generality. We suggest a clas-
sification of TLS problems revisiting and refining the basic generic-nongeneric
terminology, see [5].

A core reduction concept introduced in [7] makes a clear link between the
original data and the output of the classical TLS algorithm for the problems
with the single righ-hand side (see also [5]). Therefore the core reduction is
an appropriate tool for understanding the TLS problem with d = 1. In this
contribution we introduce an extension of the core reduction for multiple right-
hand sides problems. Following [7], we employ the SVD of A which allows us
to define the core problem and show its fundamental properties. Then we show
how the core problem can be obtained by the band generalization of the Golub-
Kahan iterative bidiagonalization proposed for this purpose by Åke Björck, see,

57



e.g., [1]. We show, together with other results in progress (see [6]), that both
approaches (based on the SVD of A and on the band algorithm) give the same
core problem up to an orthogonal transformation. Using the core reduction,
we illustrate some particular difficulties which are present in the TLS problems
with d > 1.
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Efficient tridiagonal preconditioner for the matrix-free
truncated Newton method

Ladislav Lukšan, Jan Vlček
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In this contribution, we study an efficient tridiagonal preconditioner, based on
numerical differentiation, applied to the matrix-free truncated Newton method
for unconstrained optimization. It is proved that this preconditioner is positive
definite for many practical problems. The efficiency of the resulting matrix-free
truncated Newton method is demonstrated by results of extensive numerical
experiments.

Reliability study for a mechanism aided by asynchronous
actuator powered by asynchronous diesel generator

Hocine Meglouli, Ammar Chebouba, Yahia Naoui
Laboratoire d’électrification des entreprises industrielles,
University of Boumerdes, Algeria
hmeglouli@yahoo.fr

The modern electric facilities are equipped by a great number of different mech-
anisms and devices actioned by Asynchronous electric Motor (ASM), the power
of these motors is equal to the power of the generating devices, where their
most complicated working regime is the starting when their power is equal to
the power of the generating devices.

In this regime we can have an overcharge of the generating devices by the
active and reactive power.

For this reason, this article is dedicated to the study of the starting methods
of asynchronous motors that action the mechanisms and that are powered by
Asynchronous Generating Diesel (AGD) with a limited capacity of DRY value
and a given couple of resistance.
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Skew-symmetric preconditioners for Krylov subspace
methods

Olga Pichugina
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Linear systems with large sparse non-symmetric matrices arise in many appli-
cation. It is therefore important to be able to solve them rapidly and efficiently.
Although there are a lot of techniques for solving non-symmetric linear systems,
strongly non-symmetric systems are studied not enough. The special class of
triangular and product triangular methods for solving strongly non-symmetric
systems was constructed. The basic idea was put forward by prof. Krukier [1].
He suggested to use the skew-symmetric part of the matrix and only required
the matrix to be positive real. Previously, the technique have been used for con-
struction of iterative methods. Now we used it for preconditioning of Krylov
subspace methods, that allowed us to combine the advantages of the two classes
of methods [2].
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By the technological advances in solid-state lighting, the conventional lighting
systems are transformed into high-efficiency and low-cost LED light source sys-
tems. One of the favorite application areas of this energy efficiency system is
road lightings. In recent years, many countries like Japan, Italy, etc. converted
their lightening systems to LED lightening systems which provide nearly 75
percent energy conservation. However, the biggest problem in these systems is
overheating. The produced over heat by the high power LED must be dissi-
pated effectively by a heat sink, else temperature at the armature will increase
together with this the LEDs will not work effective and their life will be shorter,
so the armature will be broken down. Because of this reason, before manufac-
ture a LED armature making its heat analysis will be many beneficial. In this
study a street type LED armature is modeled, and its energy and heat analy-
sis are performed by a computer aided program. Also the armature is tested
in laboratory by using thermocouples and thermal camera. At the end of the
study the results are compared and the convergence of computer simulation is
observed.
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